Loading...

A central goal in microbial ecology and biogeography is to quantify factors explaining the variation of microbial abundance and diversity in different ecosystems. In comparison to aquatic systems, soils are particularly heterogeneous. Soil heterogeneity resulted from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimeters to several hundred meters, the spatial structure of microbial communities is less clear.


The aim of our project phase 2008-2011 was to clarify the spatial distribution of soil bacteria, genetic structure of bacterial populations and their functions at grassland plots with different land-use intensity. The exploratories provide the opportunity to study the impact of a broad range of land-use intensities on microbial populations and functional diversity in three climatic and geological different regions. The specific aim is to test whether land-use intensity changes densities and in situ activity of denitrifiers. Analyzing functional gene densities (narG, nirK, nirS, nosZ) will help to understand, which proportion of the denitrifier community possesses genes encoding all denitrification reductases and which proportion has a truncated pathway with NO and N2O as end products.


We assumed that the heterogeneity of the soil and thus the diversity of microbial habitats is altered under long-term differences in grasslands’ fertilizer inputs and mowing practices. We hypothesize that increasing land-use intensity i) will decrease the spatial heterogeneity of microbial processes by decreasing soil microhabitat diversity (e.g. nutrient poor vice versa nutrient rich niches) and plant diversity and ii) will change the density and activity of key players involved in N-cycling.


We selected grassland sites of low (unfertilized pastures), intermediate (fertilized mown pastures), and high (fertilized mown meadows) land-use intensities (LUIs) to assess the influence of land-use intensity on spatial patterns of soil microbial properties. We used a geostatistical approach with replicated sites (n = 3) comprising the three LUI classes, which allowed us a sound geostatistical analysis of the spatial parameters determined. At each of the grassland sites, bulk soil cores from 0 to 10 cm depth were taken. Samples were collected from a total area of 10 x10m per site. A grid mesh with 2.5m distances was laid over each site and soil samples were taken starting at each grid point. Spatially randomized sampling distances, starting from each grid point and diminishing from 150, 100, 50, 25 to 12.5 cm, resulted in 54 soil cores per site for laboratory analyses. We measured microbial biomass, enzymes involved in C-, N- and P-cycling, and several soil physical and chemical properties (e.g., bulk density, pH, soil organic carbon and mineral N content), which are known to regulate microbial activity (Berner et al. 2011). At the low and high land-use intensity sites we estimated further the abundance of genes involved in N cycling using qPCR methods (archaeal and bacterial ammonia monooxygenase targeting specific steps of nitrifiers and napA, narG, nirK, nirS and nosZ targeting different processes performed by denitrifiers) (Keil et al. 2011).

Picture: The photo shows a meadow in cloudy weather, on which a square sampling grid of three by three areas has been laid out by means of white marking strips. At the back of the grid, three people in rain protective clothing are standing. In front of them, containers with working materials are placed on the grass. In the background, rows of shrubs and trees, a settlement and wooded hills can be seen.
Sampling grid at 9 central points
Picture: The photo shows a low grassy meadow with square areas marked with white bands
Sampling scheme of the distance class samples

Chemical soil properties (e.g. Corg, Nt, pH) were characterized by practical ranges (pRange) of between 1 and 14 m, whereas soil microbiological properties showed a greater variation of pRanges, providing evidence of spatial heterogeneity at multiple scales (Berner et al. 2011). The expected decrease in small-scale spatial heterogeneity in high LUI could not be confirmed for microbiological soil properties, because sampling in early spring might have reduced the influence of growing plants and fertilization. However, microbial biomass carbon was significantly greater in high LUIs, indicating that the benefit to soil microbial populations from the long-term increase in substrate and nutrient availability in fertilized grasslands is independent from factors affecting spatial structures in the short-term.

Spatial autocorrelations of the different N-cycling communities ranged between 1.4 and 7.6 m for ammonia oxidizers and from 0.3 m for nosZ-type denitrifiers to scales 414 m for nirK-type denitrifiers (Keil et al. 2011). The spatial heterogeneity of ammonia oxidizers and nirS-type denitrifiers increased in high LUI, but decreased for biogeochemical properties, suggesting that biotic and/or abiotic factors other than those measured are driving the spatial distribution of these microorganisms at the plot scale. Furthermore, ammonia oxidizers (amoA ammonia-oxidizing archaea and amoA ammonia-oxidizing bacteria) and nitrate reducers (napA and narG) showed spatial coexistence, whereas niche partitioning was found between nirK– and nirS-type denitrifiers. Therefore, spatial analyses allowed us to identify distinct distribution ranges indicating the coexistence or niche partitioning of N-cycling communities in grassland soil.

 


Doc
Freitag M., Hölzel N., Neuenkamp L., van der Plas F., Manning P., Abrahão A., Bergmann J., Boeddinghaus R., Bolliger R., Hamer U., Kandeler E., Kleinebecker T., Knorr K.-H., Marhan S., Neyret M., Prati D., Le Provost G., Saiz H., van Kleunen M., Schäfer M., Klaus V. H. (2023): Increasing plant species richness by seeding has marginal effects on ecosystem functioning in agricultural grasslands. Journal of Ecology 111 (9), 1968-1984. doi: 10.1111/1365-2745.14154
More information:  doi.org
Doc
Abrahão A., Marhan S., Boeddinghaus R. S., Nawaz A., Wubet T., Hölzel N., Klaus V. H., Kleinebecker T., Freitag M., Hamer U., Oliveira R. S., Lambers H., Kandeler E. (2022): Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land use intensity. New Phytologist 236 (5), 1936-1950. doi: 10.1111/nph.18503
More information:  doi.org
Doc
Lineare gemischte Modelle und Geostatistik für geplante Experimente in den Bodenwissenschaften – zwei unversöhnliche Methoden oder zwei Seiten derselben Medaille
Slaets J., Boeddinghaus R. S., Piepho H.-P. (2021): Linear mixed models and geostatistics for designed experiments in soil science ‐ two entirely different methods or two sides of the same coin? European Journal of Soil Science 72 (1), 47-68. doi: 10.1111/ejss.12976
More information:  doi.org
Doc
Boeddinghaus R. S., Marhan S., Gebala A., Haslwimmer H., Vieira S., Sikorski J., Overmann J., Soares M., Rousk J., Rennert T., Kandeler E. (2021): The Mineralosphere – Interactive zone for microbial colonization and carbon use in grassland soils. Biology and Fertility of Soils 57, 587–601. doi: 10.1007/s00374-021-01551-7
More information:  doi.org
Doc
Goldmann K., Boeddinghaus R. S., Klemmer S., Regan K. M., Heintz-Buschart A., Fischer M., Prati D., Piepho H.-P., Berner D., Marhan S., Kandeler E., Buscot F., Wubet T. (2020): Unraveling spatio‐temporal variability of arbuscular mycorrhiza fungi in a temperate grassland plot. Environmental Microbiology 22 (3), 873-888. doi: 10.1111/1462-2920.14653
More information:  doi.org
Doc
Nach welchen Regeln besiedeln Bakterien den Boden?
Vieira S., Sikorski J., Gebala A., Boeddinghaus R. S., Marhan S., Rennert T., Kandeler E., Overmann J. (2020): Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environmental Microbiology 22 (3), 917-933. doi: 10.1111/1462-2920.14751
More information:  doi.org
Doc
Richter-Heitmann T., Hofner B., Krah F.-S., Sikorski J., Wüst P. K., Bunk B., Huang S., Regan K., Berner D., Boeddinghaus R. S., Marhan S., Prati D., Kandeler E., Overmann J., Friedrich M. W. (2020): Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Frontiers in Microbiology 11: 1391. doi: 10.3389/fmicb.2020.01391
More information:  doi.org
Doc
Erholung von Ökosystemfunktionen nach experimenteller Störung in 73 Grünlandflächen mit unterschiedlicher Landnutzungsintensität, Artenvielfalt und Zusammensetzung der Pflanzengesellschaft
Schäfer D., Klaus V. H., Kleinebecker T., Boeddinghaus R. S., Hinderling J., Kandeler E., Marhan S., Nowak S., Sonnemann I., Wurst S., Fischer M., Hölzel N., Hamer U., Prati D. (2019): Recovery of ecosystem functions after experimental disturbance in 73 grasslands differing in land‐use intensity, plant species richness and community composition. Journal of Ecology 107 (6), 2635-2649. doi: 10.1111/1365-2745.13211
More information:  doi.org
Doc
Veränderungen von funktionellen Pflanzeneigenschaften erklären parallele Veränderungen in der Struktur und Funktion mikrobieller Gemeinschaften in Grünlandböden
Boeddinghaus R. S., Marhan S., Berner D., Boch S., Fischer M., Hölzel N., Kattge J., Klaus V. H., Kleinebecker T., Oelmann Y., Prati D., Schäfer D., Schöning I., Schrumpf M., Sorkau E., Kandeler E., Manning P. (2019): Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. Journal of Ecology 107 (5), 2197-2210. doi: 10.1111/1365-2745.13182
More information:  doi.org
Doc
Fiore-Donno A. M., Richter-Heitmann T., Degrune F., Dumack K., Regan K. M., Mahran S., Boeddinghaus R. S., Rillig M. C., Friedrich M. W., Kandeler E., Bonkowski M. (2019): Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland. Frontiers in Microbiology 10:1654. doi: 10.3389/fmicb.2019.01654
More information:  doi.org
Doc
Die Mineralosphäre – Sukzession und Physiologie von Bakterien und Pilzen während der Besiedlung reiner Minerale in Grünlandböden mit unterschiedlicher Landnutzungsintensität
Kandeler E., Gebala A., Boeddinghaus R. S., Müller K., Rennert T., Soares M., Rousk J., Marhan S. (2019): The mineralosphere – Succession and physiology of bacteria and fungi colonising pristine minerals in grassland soils under different land-use intensities. Soil Biology and Biochemistry 136: 107534. doi: 10.1016/j.soilbio.2019.107534
More information:  doi.org
Doc
Räumliche und zeitliche Variationen von Mikroorganismen in Grünlandböden - Einflüsse von Landnutzungsintensität, Pflanzen und Bodeneigenschaften
Boeddinghaus R. S. (2019): Spatial and temporal variations of microorganisms in grassland soils - influences of land-use intensity, plants and soil properties. Dissertation, University Hohenheim
More information:  opus.uni-hohenheim.de
Doc
Einfluss der Landnutzungsintensität auf die mikrobielle Bio-masse von Grünlandböden
Bauer C. (2018): Einfluss der Landnutzungsintensität auf die mikrobielle Bio-masse von Grünlandböden. Bachelor thesis, University Hohenheim
Doc
Long-term effects of disturbance and seed addition on soil microbial biomass in grassland with high and low land-use intensity
Langzeit Effect von Störung und Ansaat auf die mikrobielle Biomasse in Grünlandböden mit hoher und niedriger Landnutzungsintensität
Lang K. (2018): Long-term effects of disturbance and seed addition on soil microbial biomass in grassland with high and low land-use intensity. Bachelor thesis, University Hohenheim
Doc
Regan K., Stempfhuber B., Schloter M., Rasche F., Prati D., Philippot L., Boeddinghaus R. S., Kandeler E., Marhan S. (2017): Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry 109, 214–226. doi: 10.1016/j.soilbio.2016.11.011
More information:  doi.org
Doc
Die potentielle Methan-Oxidation des Bodens in Abhängigkeit von der Landnutzungsintensität am Beispiel von Grünland und Wald
Rohrbach K. (2017): Die potentielle Methan-Oxidation des Bodens in Abhängigkeit von der Landnutzungsintensität am Beispiel von Grünland und Wald. Bachelor thesis, University Hohenheim
Doc
Impact of soil disturbance on microorganisms in differently managed grassland soils linked to the ecosystem resilience
Binder I. (2016): Impact of soil disturbance on microorganisms in differently managed grassland soils linked to the ecosystem resilience. Master thesis, University Hohenheim
Doc
Regan K. M. (2016): Linking Microbial Abundance and Function to Understand Nitrogen Cycling in Grassland Soils. Dissertation, University Hohenheim
More information:  opus.uni-hohenheim.de
Doc
Gibt es allgemeine räumliche Verteilungsmuster von mikrobieller Biomasse und Enzymaktivitäten in Grünlandböden?
Boeddinghaus R. S., Nunan N., Berner D., Marhan S., Kandeler E. (2015): Do general spatial relationships for microbial biomass and soil enzyme activities exist in temperate grassland soils? Soil Biology & Biochemistry 88, 430-440. doi: 10.1016/j.soilbio.2015.05.026
More information:  doi.org
Doc
Einfluss von Temperaturerhöhung und Dürre auf Lachgasemissionen und die Häufigkeit von denitrifizierenden Bakterien in Grünlandböden mit unterschiedlicher Landnutzungsintensität
Keil D., Niklaus P. A., von Riedmatten L. R., Boeddinghaus R. S., Dormann K. F., Scherer-Lorenzen M., Kandeler E., Marhan S. (2015): Effects of warming and drought on potential N2O emissions and denitrifying bacteria abundance in grasslands with different land use. FEMS Microbiology Ecology 91(7), pii: fiv066. doi: 10.1093/femsec/fiv066
More information:  doi.org
Doc
Einfluss der Landnutzungsintensität auf die mikrobielle Biomasse und Enzymaktivitäten im Rhizosphärenboden verschiedener Grünlandpflanzenarten
Boob M. (2015): Einfluss der Landnutzungsintensität auf die mikrobielle Biomasse und Enzymaktivitäten im Rhizosphärenboden verschiedener Grünlandpflanzenarten. Master thesis, Universität Hohenheim
Doc
Einfluss von Landnutzung auf Abundanz, Funktion und räumliche Verteilung von N-umsetzenden Mikroorganismen in Grünlandböden
Keil D. (2015): Influence of land use on abundance, function and spatial distribution of N-cycling microorganisms in grassland soils. Dissertation, University of Hohenheim
More information:  opus.uni-hohenheim.de
Doc
Zeigen Pflanzen oder abiotische Bodeneigenschaften saisonal bedingt mehr Einfluss auf die Verteilung von Mikroorganismen in Grünlandböden?
Regan K. M., Nunan N., Boeddinghaus R. S., Baumgarten V., Berner D., Boch S., Oelmann Y., Overmann J., Prati D., Schloter M., Schmitt B., Sorkau E., Steffens M., Kandeler E., Marhan S. (2014): Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biology and Biochemistry 71, 21–30. doi: 10.1016/j.soilbio.2013.12.024
More information:  doi.org
Doc
Eine neue Methode (midDRIFTS basierte Spektroskopie) erlaubt die schnelle und kostengünstige Vorhersage von mikrobieller Biomasse und Aktivität in Grünlandböden
Rasche F., Marhan S., Berner D., Keil D., Kandeler E., Cadisch G. (2013): midDRIFTS-based partial least square regression analysis allows predicting microbial biomass, enzyme activities and 16S rRNA gene abundance in soils of temperate grasslands. Soil Biology and Biochemistry 57, 504–512. doi: 10.1016/j.soilbio.2012.09.030
More information:  doi.org
Doc
Einfluss von Landnutzungsintensität auf die räumliche Verteilung Stickstoff umsetzender Mikroorganismen in Grünlandböden
Keil D., Meyer A., Berner D., Poll A., Schützenmeister A., Piepho H.-P., Vlasenko A., Philippot L., Schloter M., Kandeler E., Marhan S. (2011): Influence of land-use intensity on spatial distribution of N-cycling microorganisms in grassland soils . FEMS Microbiology Ecology 77 (1), 95-106. doi: 10.1111/j.1574-6941.2011.01091.x
More information:  doi.org
Doc
Die Landnutzungsintensität verändert die räumliche Verteilung und Funktion von Bodenmikroorganismen im Grünland
Berner D., Marhan S., Keil D., Schützenmeister A., Piepho H.-P., Poll C., Kandeler E. (2011): Land-Use Intensity Modifies Spatial Distribution and Function of Soil Microorganisms in Grasslands. Pedobiologia 54 (5-6), 341-351. doi:10.1016/j.pedobi.2011.08.001
More information:  doi.org
Doc
Einfluss von Landnutzungsintensität auf Mikroorganismen in Grünlandböden der Schwäbischen Alb
Breuer B.S. (2008): Einfluss von Landnutzungsintensität auf Mikroorganismen in Grünlandböden der Schwäbischen Alb. Bachelor Thesis, University Hohenheim
Doc
Räumliche Heterogenität mikrobieller Enzymaktivitäten in Grünlandböden der Schwäbischen Alb
Glatzle S.(2008): Räumliche Heterogenität mikrobieller Enzymaktivitäten in Grünlandböden der Schwäbischen Alb. Bachelor thesis, University Hohenheim

Public Datasets

Dataset
Abrahão, Anna (2022): Plant species richness and biomass, and soil microbial properties data used in "Microbial drivers of plant richness and productivity in a grassland restoration experiment along a gradient of land-use intensity". Version 13. Biodiversity Exploratories Information System. Dataset. https://doi.org/10.25829/bexis.31348-12
Dataset
Marhan, Sven (2022): Metabolic quotient of soil microorganisms, grassland EPs, soil sampling campaign 2017. Version 5. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/31315?version=5/ddm/data/Showdata/31315?version=5
Dataset
Boeddinghaus, Runa; Berner, Doreen; Marhan, Sven; Kandeler, Ellen (2020): FTIR measures of burried mineral containers with labelled artificial root exudates on 10 ALB sites, SCALEMIC Phase 4 (2014-2017) WP1. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26150?version=2/ddm/data/Showdata/26150?version=2
Dataset
Boeddinghaus, Runa; Berner, Doreen; Marhan, Sven; Kandeler, Ellen (2020): FTIR measures of standards for burried mineral containers with labelled artificial root exudates on 10 ALB sites, SCALEMIC Phase 4 (2014-2017) WP1. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26149?version=2/ddm/data/Showdata/26149?version=2
Dataset
Boeddinghaus, Runa; Marhan, Sven; Kandeler, Ellen (2020): Soil physico-chemical and root biomass data for 2015 and 2018 of 25 HAI grassland MIPs, cooperation SADE-SCALEMIC . Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26146?version=3/ddm/data/Showdata/26146?version=3
Dataset
Boeddinghaus, Runa; Berner, Doreen; Marhan, Sven; Kandeler, Ellen (2020): Soil enzyme activities of all grassland EPs, soil sampling campaign (SSC) 2017, SCALEMIC. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26147?version=3/ddm/data/Showdata/26147?version=3
Dataset
Boeddinghaus, Runa; Gebala, Aurelia; Berner, Doreen; Marhan, Sven; Kandeler, Ellen (2020): Microbiological and chemical data of burried mineral containers with labelled artificial root exudates on 10 ALB sites, SCALEMIC Phase 4 (2014-2017) WP1. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26148?version=2/ddm/data/Showdata/26148?version=2
Dataset
Kandeler, Ellen; Marhan, Sven; Abrahao, Anna; Boeddinghaus, Runa (2020): Soil microbial phospholipid fatty acids (PLFAs) and soil enzyme activities measured on 10 SADE plots in the ALB, 2015-2018, cooperation SADE-SCALEMIC. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/27646?version=2/ddm/data/Showdata/27646?version=2
Dataset
Boeddinghaus, Runa; Mayer-Gruner, Paula; Marhan, Sven; Kandeler, Ellen (2020): Approximated pore size distribution of grassland EPs (SSC 2014) SCALEMIC. Version 4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/26207?version=4/ddm/data/Showdata/26207?version=4
Dataset
Boeddinghaus, Runa; Marhan, Sven; Berner, Doreen; Boch, Steffen; Fischer, Markus; Hoelzel, Norbert; Kattge, Jens; Klaus, Valentin; Kleinebecker, Till; Oelmann, Yvonne; Prati, Daniel; Schäfer, Deborah; Schöning, Ingo; Schrumpf, Marion; Sorkau, Elisabeth; Kandeler, Ellen; Manning, Pete (2019): Dataset used in Boeddinghaus et al. (2019) "Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities" Journal of Ecology. Version 4. Biodiversity Exploratories Information System. Dataset. https://doi.org/10.25829/bexis.24867-1.1.23
Dataset
Boeddinghaus, Runa; Bauer, Christina; Marhan, Sven; Kandeler, Ellen (2019): Physico-chemical soil properties of all grassland EPs, soil sampling campaign (SSC) 2017, SCALEMIC. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/25586?version=3/ddm/data/Showdata/25586?version=3
Dataset
Boeddinghaus, Runa; Müller, Karolin; Bauer, Christina; Marhan, Sven; Kandeler, Ellen (2019): Microbial soil properties of all grassland EPs, soil sampling campaign (SSC) 2017, SCALEMIC. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/25408?version=3/ddm/data/Showdata/25408?version=3
Dataset
Boeddinghaus, Runa; Marhan, Sven; Kandeler, Ellen (2019): Soil physico-chemical and root biomass data for 2015 and 2018 of 25 SCH grassland MIPs, cooperation SADE-SCALEMIC . Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/25706?version=3/ddm/data/Showdata/25706?version=3
Dataset
Boeddinghaus, Runa; Gebala, Aurelia; Berner, Doreen; Marhan, Sven; Kandeler, Ellen (2019): Microbiological and chemical data of burried mineral containers with labelled roots on 10 ALB sites, SCALEMIC Phase 4 (2014-2017) WP2. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/24708?version=2/ddm/data/Showdata/24708?version=2
Dataset
Boeddinghaus, Runa; Regan, Kathleen; Marhan, Sven; Kandeler, Ellen (2019): Soil enzyme activities of the SCALEMIC Experiment (AEG31, 2011). Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/25409?version=2/ddm/data/Showdata/25409?version=2
Dataset
Boeddinghaus, Runa; Kandeler, Ellen (2019): Soil water and dry matter content of SADE samples 2015-2018 ALB (SCALEMIC). Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/25226?version=2/ddm/data/Showdata/25226?version=2
Dataset
Richter-Heitmann, Tim; Friedrich, Michael (2018): SCALEMIC - Acidobacterial rRNA sampled from top soil at six dates in 2011 on one ALB grassland plot. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/22406?version=2/ddm/data/Showdata/22406?version=2
Dataset
Richter-Heitmann, Tim; Friedrich, Michael (2017): SCALEMIC - Inventory of active Bacteria - Data. Version 14. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/21566?version=14/ddm/data/Showdata/21566?version=14
Dataset
Richter-Heitmann, Tim; Friedrich, Michael (2017): SCALEMIC - Inventory of active Bacteria - Codelist. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/21606?version=2/ddm/data/Showdata/21606?version=2
Dataset
Bonkowski, Michael; Fiore-Donno, Anna Maria (2017): Metacommunity analysis of seasonal and spatial variation of Cercozoa in a grassland soil. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/22147?version=2/ddm/data/Showdata/22147?version=2
Dataset
Bonkowski, Michael; Fiore-Donno, Anna Maria (2017): Metacommunity analysis of seasonal and spatial variation of Cercozoa in a grassland soil - Data. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/22166?version=2/ddm/data/Showdata/22166?version=2
Dataset
Kandeler, Ellen; Berner, Doreen; Marhan, Sven; Boeddinghaus, Runa (2016): Soil enzyme activities of all grassland EPs, soil sampling campaign (SSC) 2014, SCALEMIC. Version 4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20247?version=4/ddm/data/Showdata/20247?version=4
Dataset
Kandeler, Ellen; Berner, Doreen; Marhan, Sven; Boeddinghaus, Runa (2016): Soil enzyme activities of all grassland EPs, soil sampling campaign (SSC) 2011, SCALEMIC. Version 4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20246?version=4/ddm/data/Showdata/20246?version=4
Dataset
Kandeler, Ellen; Boeddinghaus, Runa; Marhan, Sven; Binder, Ines (2016): Microbial and physico-chemical soil properties, Alb grassland, 2015, cooperation SADE-SCALEMIC. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20227?version=2/ddm/data/Showdata/20227?version=2
Dataset
Kandeler, Ellen; Marhan, Sven; Berner, Doreen; Boeddinghaus, Runa (2016): Physico-chemical soil properties of all grassland EPs, soil sampling campaign (SSC) 2014, SCALEMIC. Version 5. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20249?version=5/ddm/data/Showdata/20249?version=5
Dataset
Kandeler, Ellen; Marhan, Sven; Berner, Doreen; Boeddinghaus, Runa (2016): Microbial soil properties of all grassland EPs, soil sampling campaign (SSC) 2011, SCALEMIC. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20250?version=3/ddm/data/Showdata/20250?version=3
Dataset
Kandeler, Ellen; Marhan, Sven; Boeddinghaus, Runa; Gebala, Aurelia; Berner, Doreen; Boob, Meike (2016): Microbial rhizosphere and bulk soil properties, Alb grassland, 2014, cooperation BELOW-SCALEMIC. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20206?version=2/ddm/data/Showdata/20206?version=2
Dataset
Kandeler, Ellen; Marhan, Sven; Berner, Doreen; Boeddinghaus, Runa (2016): Physico-chemical soil properties of all grassland EPs, soil sampling campaign (SSC) 2011, SCALEMIC. Version 5. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20248?version=5/ddm/data/Showdata/20248?version=5
Dataset
Kandeler, Ellen; Marhan, Sven; Berner, Doreen; Boeddinghaus, Runa (2016): Microbial soil properties of all grassland EPs, soil sampling campaign (SSC) 2014, SCALEMIC. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/20251?version=3/ddm/data/Showdata/20251?version=3
Dataset
Richter-Heitmann, Tim; Friedrich, Michael; Marhan, Sven (2015): SCALEMIC - LINK to Short Read Archive - Bacterial Activity. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/19466?version=3/ddm/data/Showdata/19466?version=3
Dataset
Regan, Kathleen; Berner, Doreen; Boeddinghaus, Runa; Marhan, Sven; Kandeler, Ellen (2014): Physico-chemical and microbial soil properties and plant diversity of AEG31, 2011, SCALEMIC-Experiment. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/17707?version=2/ddm/data/Showdata/17707?version=2
Dataset
Prati, Daniel; Fischer, Markus (2014): SCALEMIC - Plant diversity, 2011. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/17446?version=2/ddm/data/Showdata/17446?version=2
Dataset
Baumgartner, Vanessa; Kandeler, Ellen (2012): Number of cells in soil samples of plot AEG31, 2011, SCALEMIC-Experiment. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/14946?version=2/ddm/data/Showdata/14946?version=2
Dataset
Berner, Doreen; Boeddinghaus, Runa; Regan, Kathleen; Keil, Daniel; Marhan, Sven; Kandeler, Ellen (2012): Soil physical and chemical properties of grassland VIPs in Hainich, SCALEMIC 2008. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/14668?version=3/ddm/data/Showdata/14668?version=3
Dataset
Berner, Doreen; Regan, Kathleen; Keil, Daniel; Marhan, Sven; Kandeler, Ellen (2012): Physico-chemical soil properties of all grassland VIPs, SCALEMIC 2008. Version 4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/14666?version=4/ddm/data/Showdata/14666?version=4
Dataset
Berner, Doreen; Boeddinghaus, Runa; Regan, Kathleen; Keil, Daniel; Marhan, Sven; Kandeler, Ellen (2012): Soil microbiological properties of grassland VIPs in Hainich, SCALEMIC 2008. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/14667?version=2/ddm/data/Showdata/14667?version=2
Dataset
Berner, Doreen; Regan, Kathleen; Keil, Daniel; Marhan, Sven; Kandeler, Ellen (2010): Soil microbiological properties of grassland VIPs of ALB, SCALEMIC 2008. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/11323?version=3/ddm/data/Showdata/11323?version=3
Dataset
Berner, Doreen; Regan, Kathleen; Keil, Daniel; Marhan, Sven; Kandeler, Ellen (2010): Soil physical and chemical properties of grassland VIPs in ALB, SCALEMIC 2008. Version 5. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de/ddm/data/Showdata/11320?version=5/ddm/data/Showdata/11320?version=5

Non-public datasets

Dataset
Hyphobox experiment, Heidfeldhof Hohenheim, 2020
Brandt, Luise; Abrahao, Anna (2024): Hyphobox experiment, Heidfeldhof Hohenheim, 2020. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31933
Dataset
Soil mineral nitrogen (Nmin) of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Soil mineral nitrogen (Nmin) of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021. Version 7. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31634
Dataset
Soil mineral nitrogen (Nmin) of all grassland plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Soil mineral nitrogen (Nmin) of all grassland plots, Soil sampling campaign (SSC) 2021. Version 7. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31630
Dataset
Soil water content of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Soil water content of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31636
Dataset
Microbial biomass C (Cmic) and N (Nmic) and soil microbial C to N ratio of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Microbial biomass C (Cmic) and N (Nmic) and soil microbial C to N ratio of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021. Version 2. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31638
Dataset
Gene abundances 16S Bacteria, nirK, nirS, nosZ clade I, II, soil sampling campaigns (SSC) 2011, 2014, 2017
Marhan, Sven (2023): Gene abundances 16S Bacteria, nirK, nirS, nosZ clade I, II, soil sampling campaigns (SSC) 2011, 2014, 2017. Version 3. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31648
Dataset
Soil extractable organic carbon and extractable total nitrogen – soil sampling campaign 2021, all grassland experimental plots (EPs), 0-10 cm
Marhan, Sven (2023): Soil extractable organic carbon and extractable total nitrogen – soil sampling campaign 2021, all grassland experimental plots (EPs), 0-10 cm. Version 13. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31629
Dataset
Microbial biomass C (Cmic) and N (Nmic) and soil microbial C to N ratio of all grassland EP plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Microbial biomass C (Cmic) and N (Nmic) and soil microbial C to N ratio of all grassland EP plots, Soil sampling campaign (SSC) 2021. Version 4. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31637
Dataset
Soil extractable organic carbon and extractable total nitrogen of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021
Marhan, Sven (2023): Soil extractable organic carbon and extractable total nitrogen of REX 1 and LUX grassland plots, Soil sampling campaign (SSC) 2021. Version 8. Biodiversity Exploratories Information System. Dataset. https://www.bexis.uni-jena.de. Dataset ID= 31635

Project in other funding periods

Picture: The photo shows a hand in a turquoise glove lifting a piece of soil between meadow grass. The thickness of the piece of soil is estimated at ten to fifteen centimetres.
SCALEMIC (Contributing project)
#Microorganisms & Fungi  #2011 – 2014  #Nitrogen cycle […]
Picture: The photo shows a hand in a turquoise glove lifting a piece of soil between meadow grass. The thickness of the piece of soil is estimated at ten to fifteen centimetres.
SCALEMIC (Contributing project)
#Microorganisms & Fungi  #2014 – 2017  #Nitrogen cycle […]
Picture: The photo shows a hand in a turquoise glove lifting a piece of soil between meadow grass. The thickness of the piece of soil is estimated at ten to fifteen centimetres.
SCALEMIC (Contributing project)
#Microorganisms & Fungi  #Soil Ecology  #BEF  #2023 – 2026  #2020 – 2023  #Microbial community […]

Scientific assistants

Prof. Dr. Ellen Kandeler
Project manager
Prof. Dr. Ellen Kandeler
Universität Hohenheim
Dr. Sven Marhan
Project manager
Dr. Sven Marhan
Universität Hohenheim
Doreen Berner
Alumni
Doreen Berner
Daniel Keil
Alumni
Daniel Keil
Top